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Abstract With the rapid advance in networking, data
storage, and data collection technique, big data is fast ex-
panding in various scientific and engineering fields, such as
physical, social and biological sciences. Thanks to solving
difficult optimization problems without detailed prior
knowledge, evolutionary algorithm (EA) has become a
powerful optimization technique for dealing with complex
problems in big data. This study focuses on differential
evolution (DE), which is one of the most successful and
popular EAs and distinguishes from other EAs with its
mutation mechanism. However, for the mutation operators
of most DE algorithms, the base and difference vectors are
always randomly selected from the whole population,
where the population information is not utilized effec-
tively. In this study, a novel DE framework with distributed
direction information based mutation operators (DE-DDI)
is proposed. In DE-DDI, the distributed topology is em-
ployed to create a neighborhood for each individual in the
population first and then the direction information derived
from the neighbors is introduced into the mutation operator
of DE. Therefore, the neighborhood and direction infor-
mation are fully utilized to exploit the regions of better
individuals and guide the search to the promising area. In
order to test the performance of the proposed algorithm,
DE-DDI is applied to several original DE algorithms, as
well as the advanced DE variants. The results clearly
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indicate that DE-DDI is able to improve the performance of
the DE algorithms studied.
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1 Introduction

During the past decade, large amounts of data have been
generated in various scientific and engineering fields due to
the development of high throughput technologies. With
such large size of data, it becomes difficult to perform
effective analysis by the existing traditional methods. This
promotes the rise of big data, which has drawn huge at-
tention from researchers in information sciences, policy
and decision makers in governments and enterprises (Philip
Chen and Zhang 2014). Big data is characterized by large-
volume, complex, growing data with multiple, autonomous
sources. Due to these characteristics, various challenges
and issues related to big data are put forward, mainly ex-
isting in difficulties in data capture, data storage, and data
analysis and data visualization. Recently, more and more
fields involve big data, such as social network, bioinfor-
matics, e-commerce, and so on. In order to capture the
value from big data, a lot of techniques have been devel-
oped (Philip Chen and Zhang 2014), e.g., optimization
methods, data mining, knowledge-based platform, social
network analysis, etc. These big data techniques involve
many disciplines and overlap with each other frequently
(Philip Chen and Zhang 2014).

For the big data problems, they always have the char-
acteristics of the large search space, sparse and incomplete
data, potentially complex fitness landscapes and dynamic
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and uncertain (Thomas and Jin 2014). Inspired from natural
evolution process, evolutionary algorithms (EAs) are suit-
able for dealing with these problems, as they require little
or no prior knowledge of problems and can cope with
multiple objectives and constraints based on data prove-
nance or heterogeneous sources. Thus, it makes EAs a
powerful tool for dealing with complex problems in big
data. As an optimization technique for big data, EAs have
the great potential in tacking complex problems, and have
attracted great attention from both academia and industry
in many fields. They also have been applied successfully to
solve the quantitative problems in various fields, such as
physics, biology, engineering, and so on.

Differential evolution (DE), proposed in (Storn and
Price 1997), is a simple yet powerful EA for global nu-
merical optimization. Recently, DE has become one of the
most widely used for handling global optimization prob-
lems (Das and Suganthan 2011). Furthermore, DE has been
successfully applied in many science and engineering
fields, such as pattern recognition (Campomanes-AlvareZ
et al. 2014), signal processing (Das and Konar 2006),
satellite communications (Wang and Cai 2015), vehicle
routing problem (Zhou and Wang 2015), and so on.

During the last decade, there are many enhanced DE
variants proposed in the literature (Das and Suganthan
2011). In these advanced DE variants, modifications mostly
focus on devising the new mutation operators (Das et al.
2009; Zhang and Sanderson 2009; Wang et al. 2014a),
employing the self-adaptive strategies for control pa-
rameters (Qin et al. 2009; Yang et al. 2014), proposing the
ensemble strategies (Tang et al. 2014), developing the
hybrid DE with other optimization methods (Sun et al.
2005; Cai et al. 2014a; Li et al. 2015) and population
topology (Dorronsoro and Bouvry 2011), etc.

Generally, the mutant vector can be treated as the lead
individual to search the decision space and is constructed by
adding a scaled difference vector to a base vector. However,
we have observed that these two vectors (i.e., the base and
difference vectors) in most DE variants are always ran-
domly selected. In this case, the population information
could not be fully utilized to guide the search of DE.

In order to alleviate this drawback and improve the
performance of DE, a new DE framework with distributed
topology based mutation operator (DE-DDI) is proposed in
this study. In DE-DDI, a distributed topology is first em-
ployed to define a neighborhood for each vector. Then, the
neighbors of each vector are divided into better and worse
groups according to their fitness compared to that of it.
Finally, the direction information is introduced into muta-
tion by selecting the vectors from the better and worse
groups, respectively to construct the difference vector. In
this way, DE-DDI not only utilizes the information of
neighboring individuals to exploit the regions of minima
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but also incorporates the direction information of popula-
tion to prevent individuals from entering an undesired re-
gion and move to a promising area. Hence, the population
information composed by neighborhood information and
direction information can be simultaneously and fully uti-
lized in DE-DDI to guide the search of DE.

To evaluate the effectiveness of the proposed method,
extensive experiments have been carried out on CEC 2005.
With the analysis of the extensive experiments, we can
clearly find that DE-DDI is able to improve the perfor-
mance of the DE algorithms studied.

The main contributions of this paper include the
following:

e Both neighborhood and direction information are fully
and simultaneously utilized in the mutation strategy to
generate the mutant.

e DE-DDI provides a simple yet powerful method for
improving the explorative ability of DE. In addition,
DE-DDI is simple and easily applied to other DE
variants.

e The extensive experiments are carried out to show the
effectiveness of DE-DDI. The results demonstrate that
DDI is able to enhance the performance of most DE
algorithms studied.

The rest of this paper is organized as follows: In Sect. 2,
the original DE is introduced. Section 3 briefly reviews
some related work. The proposed DE-DDI is presented in
detail in Sect. 4. In Sect. 5, experimental results are re-
ported. Finally, the conclusions are drawn in Sect. 6.

2 DE

In this study, DE is for solving the numerical optimization
problem. Without loss of generality, we consider the op-
timization problem to be minimized is f(X), X =
[x!,x%,...,xP] € RP and D is the dimension of the decision
variables. DE evolves a population of NP vectors repre-
senting the candidate solutions. Each vector is denoted as
Xic =[x} g, X7, - - - X1g), where i = 1, 2... NP, NP is the
size of the population and G is the number of current
generation.

2.1 Initialization

In DE, the initial population should cover the entire search
space as much as possible by uniformly randomizing in-
dividuals within the search space constrained by the pre-
scribed minimum and maximum bounds. That is, the jth
parameter of the ith individual is initialized by

xlg =L +rand(0,1) x (U; — L) (1)
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where rand(0, 1) represents a uniformly distributed random
number within the range (0, 1) and L; and U; represents the
lower and upper bounds of the jth variable, respectively.

2.2 Mutation

Following initialization, DE employs the mutation strategy
to generate a mutant vector V;s with respect to each in-
dividual X; s (called target vector) in the current popula-
tion. Six most frequently used mutation strategies in the
literature are listed as follows:

e DE/rand/1

Vi =Xnc+F x (X6 —X36) (2)
e DE/rand/2

Vie =Xnc+F X (Xnc—Xs6)+F X Xuc—Xisc)
3)
e DE/best/1

Vi = Xvest.c + F X Xr1.6 — X2,6) 4)

e DE/best/2

Vic = Xoes,c + F X (X6 — Xo6) + F X (X306 — Xra6)
(5)

e DE/current-to-best/

Vic =Xic + F X Xvestc — Xig) + F X (Xn1.6 — X2.6)
(6)
e DE/rand-to-best/1

Vi =Xn6+F X (Xoestc — Xrig) + F X (X206 — X136)

(7)

The indices r1, r2, r3, r4 and r5 are mutually exclusive
integers randomly generated within the range (1, NP),
which are also different from the index i. Xpeq ¢ is the best
individual vector at generation G, and the mutation factor
F is a positive control parameter for scaling the difference
vector. More details can be found in (Das and Suganthan
2011; Storn and Price 1997).

2.3 Crossover

After the mutation phase, crossover operator is applied to
each pair of X; s and Vs to generate a trial vector U, g.

There are two kinds of crossover scheme: binomial and
exponential. The binomial crossover is widely used, which
can be defined as follows:

J
o= Vic
iG = j
XiG

where CR € (0, 1) is called the crossover rate. j,,q i a

if rand(0, 1) < CR or j = jrang;
otherwise,

(3)

randomly chosen integer in the range (1, D). If ul’ ¢ is out of
the boundary, we reinitialized it within the range (L;, U)).

2.4 Selection

The selection operator selects the better one from each pair
of X;c and U, for the next generation. The selection
operator is given by

- _JUg iff(Uic) <f(Xig);
X“GH_{X,-,G otherwise. ©)

3 Related work

In the section, we focus on the related work on how the
population information, especially neighborhood and di-
rection information, has been utilized in DE to improve its
performance.

3.1 Neighborhood information

There are two main types of neighborhood information:
one relies on the population topology and the other on the
geographical locations on the fitness landscape. More de-
tails about the neighborhood concepts utilized in DE could
be found in (Epitropakis et al. 2011).

In the first one, the neighbors of each individual do not
necessary lie in the vicinity of its topological region in the
search space. Different from the original DE algorithm,
many DE variants utilize the neighborhood information
with the structured population. In these DE variants, the
individuals for the mutation strategies are selected ac-
cording to a neighbor list constructed from the population
topologies. Two main canonical kinds of structured
population in DE could be found in literature, i.e., cellular
DE (cDE) (Noman and Iba 2011) and distributed DE (dDE)
(Weber et al. 2010, 2011; Neri et al. 2011). Recently,
several population topologies, e.g., cellular, distributed,
ring, small-world, were introduced in DE to improve its
performance (Dorronsoro and Bouvry 2011).

The second kind of neighborhood information is derived
from the current population during the evolutionary pro-
cess. In this, we name some individuals be the neighbors of
one individual when they locate in the vicinity of its
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topological region in the search space. In (Epitropakis et al.
2011), a proximity-based DE framework (ProDE) was
proposed by using an affinity matrix based on the Eu-
clidean distance to select the individuals for the mutation
strategies. For improving the performance of DE, the
learning-enhanced DE (LeDE) was proposed in (Cai et al.
2012). In LeDE, the neighborhood of each individual,
which involved in the intra-cluster learning strategy, is
defined based on the identified clusters. In (Wang et al.
2014b), by the cooperation of objective-wise learning
process, all the objectives of the considered solution could
be simultaneously guided to optimize in parallel.

3.2 Direction information

In DE, the difference vector of the mutation strategies is
always be constructed in a random manner. In order to
overcome this drawback of DE, several DE variants are
proposed by using the direction information to construct
the difference vector.

In (Wang and Xiang 2008), a new mutation strategy,
which is identified as DE/rand/+mean, was proposed. In
this strategy, the population is partitioned into two sub-
populations according to the mean fitness value of all in-
dividuals. Then the different vector is constructed by ran-
domly selecting two vectors from the better and worse sub-
population, respectively. Recently, a novel DE framework,
DE with neighborhood and direction information (NDi-
DE), was proposed by designing three types of direction
information for mutation (Cai and Wang 2013). In NDi-DE,
the direction information is derived from two sources,
namely, the best and worst near-neighbor individuals. Then,
three types of direction information based on the direction
information with different sources are introduced to guide
search. In the further work (Cai et al. 2014b; Cai and Du
2014), an adaptive operator selection (AOS) mechanism
was introduced into NDi-DE for different mutation strate-
gies. In this way, a good balance between exploration and
exploitation of the novel DE framework (aNDi-DE) could
be dynamically achieved. In (Bi and Xiao 2011), by using
the direction information with the current best solution and
the best previous solution of each individual, the authors
proposed a classification-based self-adaptive DE.

4 DE-DDI

In this section, the proposed framework, i.e., DE-DDI, is
described in detail. First, the motivation of this study is
given first. Second, the two main components of DDI, i.e.,
distributed topology-based neighborhood and mutation
with direction information, are presented. Third, the com-
plete proposed framework is shown.
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4.1 Motivations

As mentioned above, both neighborhood information and
direction information can be utilized to improve the per-
formance of DE, but they are not fully and simultaneously
exploited in the evolutionary process for most DE algo-
rithms. Furthermore, in most DE algorithms, the base and
difference vectors are randomly selected for mutation,
which cannot utilize the population information to guide
the search effectively. Thus, based on these considerations,
we utilize the population information composed by
neighborhood and direction information to propose a new
mutation operator to enhance the performance of DE.

4.2 Distributed topology-based neighborhood

In order to define a neighborhood for each individual in the
population, a distributed topology with NP individuals is
employed first. In this topology (with four islands illus-
trated in Fig. 1), the population is partitioned into four is-
lands, which are evolved by the independent DE. We also
refer to the populations in the islands as subpopulations of
the algorithm, as it is commonly done in the literature. In
this way, individuals in the same island are neighbors.

For the individuals in different islands to communicate
with each other, when one island does not evolve a better
individual for Q generations, we employ a process called
recombination. In this process, each island will be recon-
structed by a same number of individuals, which are ran-
domly selected from the current whole population. This
will allow the algorithm to better benefit from the diversity
of solutions in the different islands.

4.3 Mutation with direction information

Based on the defined neighbors with distributed topology, the
direction information is introduced into mutation operator by
selecting several individuals to construct the difference vec-
tors. The base vector, i.e., X,1,¢ in DE/rand/1, is randomly

\\\ Entire
population

N
\,

Fig. 1 14
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selected from the neighbors of X;, first. Then, with respect to
the fitness of the base vector, all of the neighbors of X; are
partitioned into the better and worse groups. Finally, the ter-
minal point of the difference vector, i.e., X,, in DE/rand/1, is
randomly selected from the better group and the start point, i.e.,
X,3 in DE/rand/1, is randomly selected from the worse group.
In this way, the difference vector with good direction infor-
mation that directing at the better individual from the worse
one can be obtained to guide the search in the solution space.

4.4 The framework of DE-DDI

As described above, it’s clear that DE-DDI works through
a simple cycle of stages, presented in Fig. 2. In this paper,
we name the complete framework of DE-DDI with the DE/
rand/1 strategy as DE-DDI/rand/1. And the corresponding
pseudo-code of DE-DDI/rand/1 is shown in Algorithm 1
where the differences with respect to DE/rand/1 are high-
lighted with “*” . It is clear that the proposed DE-DDI only
affects the mutation stage, hence it could be directly and
easily applied to most of the DE algorithms.

For the mutation operators which employ the best in-
dividual (e.g., DE/best/1), when applying DE-DDI to it, the
best one in the neighborhood of the current individual will
be selected as the best individual in DE-DDI. As for con-
structing the difference vector, when the base vector is the
best or worst vector in the neighborhood, the vectors are
randomly selected from the neighborhood and the differ-
ence vector will be constructed by directing at the better
solution from the worse one.

Algorithm 1 DE-DDI/rand/1

1: Generate the initial population P% and set G = 1;

2: Evaluate the fitness for each individual in P
3: While the terminated condition is not satisfied do

4:  For each individual )X; ; do

5: *Randomly select the base vector X,; from the
neighborhood of X; ;;
6: *Partition all the neighbors of X;; into better and

worse groups by comparing with the fitness of X; s;
7 *Randomly select X,,, X,; from the better and worse

groups respectively;

8: Use Eq. (2) to generate a mutant vector

9: Use Eq. (8) to generate a trial vector;

10: Use Eq. (9) to determine the survived vector;
11:  End For

12: SetG=G+1
13: End while

Initialization
Distributed topology- Mutation with
based neighborhood direction information | [—>] Crossover — Selection

DDI based mutation

|

Fig. 2 Main stages of the DE-DDI

5 Experimental results and analysis

In order to evaluate the performance of DE-DDI, 25 classic
benchmark functions from the CEC2005 special session on
real-parameter optimization (Suganthan et al. 2005) and
three real-world problems (Eshelman et al. 1997; Das and
Suganthan 2010) are used. In this section, the benchmark
functions are presented first. Second, the experimental se-
tup is shown. Finally, the simulation results are analyzed
and discussed.

5.1 Benchmark function

In this section, 25 benchmark functions are used, denoted
as F1-F25, which are from the special session on real-
parameter optimization of the 2005 IEEE Congress on
Evolutionary Computation (CEC 2005). According to the,
they can be categorized into four groups: unimodal func-
tions (F1-F5), basic multimodal functions (F6-F12), ex-
panded multimodal functions (F13-F14) and hybrid
composition functions (F15-F25).

5.2 Parameter settings

In order to maintain a fair and reliable comparison between
DE-DDI and its corresponding competitors, the same ran-
dom initial population is employed in this study. And the
parameters are set as follows unless a change is mentioned.

Dimension: D = 30;

Population size: NP = 100;

Mutation factor: F = 0.5;

Crossover rate: CR = 0.9;

Type of distributed topology: 14 (n = 4);
Stagnation tolerance: Q = 20;
Number of runs: NumR = 25;
Maximum  number  of
MNFEs = 10,000 x D.

function  evaluations:

In the experiments, the comparisons between the four
original DE algorithms (i.e., DE/rand/2, DE/best/2, DE/
current-to-best/1 and DE/rand-to-best/1) and their corre-
sponding DE-DDI algorithms are conducted first. Then,
we compare the performance of two advanced DE
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Fig. 3 Convergence graphs of the original DE and the corresponding DE-DDI for the selected functions at D = 30
Table 2 Results of the multi-problem Wilcoxon’s test for DE-DDI versus the corresponding DE algorithm for all the functions at 30D
Algorithm wit/l R+ R— p value a = 0.05 a=0.1
DE-DDI/rand/2 vs DE/rand/2 20/5/0 315 10 3.20E—-05 + +
DE-DDI/best/2 vs DE/best/2 4/18/3 214 86 6.34E—-02 = +
E-DDI/current-to-best/1 vs DE/current-to-best/ 19/5/1 294 6 3.70E—-05 + +
DE-DDI/rand-to-best/1 vs DE/rand-to-best/1 12/8/5 259 66 9.06E—03 + +
MDE_pBX-DDI vs MDE_pBX 9/15/1 191 134 4.27E—-01 =
ODE-DDI vs O DE 6/15/4 170.5 129.5 5.47E-01

variants with the corresponding DE-DDI variants,
namely MDE_pBX (Islam et al. 2012) and ODE (Rah-
namayan et al. 2008). All the parameters of these DE
variants are set as their original papers. The simulations
are carried out on an Intel Core i3 duo personal com-
puter with 3.30-GHz central processing unit and 4-GB
random access memory.

In order to show the significant differences among the
algorithms, several nonparametric statistical tests (Garcia
et al. 2009; Derrac et al. 2011), are also carried out by the
KEEL software (Alcala-Fdez et al. 2009). The results of
the single-problem Wilcoxon signed-rank test, at
o = 0.05 are summarized in the last row of the tables as
“w/t/l”, which means that DE-DDI wins, ties and loses on
w, t and [ functions, compared with its corresponding
competitor.

@ Springer

5.3 Comparison with original DE algorithms

In this section, several classic DE mutation operators [see
Egs. (2)—(7)] are used in the experimental study. The re-
sults for all functions at D = 30 are shown in Table 1.

For all the functions at 30D, Table 1 shows that in most
of the test functions DE-DDI provides significantly better
results compared with their corresponding original DE
methods. Specifically, for DE/rand/2, it exhibits substantial
performance improvements in 20 out of 25 functions. For
DE/best/2, DE-DDI is significantly better on four func-
tions. For the exploitation strategy, DE-DDI can enhance
the explorative ability of DE/current-to-best/1 to yield
significantly performance improvement on 19 out of 25
functions. For DE/rand-to-best/1, DE-DDI is also sig-
nificantly better on 12 functions.
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Fig. 4 Convergence graphs of the advanced DE and the corresponding DE-DDI for the selected functions at D = 30

Fig. 5 Distributed topology types

Figure 3 shows that the convergence speed of DE-DDI
is better than most of the corresponding original DE al-
gorithms for most selected functions.

Furthermore, for clearly presenting the significant dif-
ferences between DE-DDI and its corresponding DE
method, the multi-problem Wilcoxon signed-rank test is
also carried out on all the problems at 30D. The results are
shown in Table 2. It is clear that DE-DDI can obtain the
higher R+ values than R— values in all the cases. In ad-
dition, the p value in most cases are less than 0.05, which
means that DE-DDI is significantly better than most of the
original DE algorithms.

5.4 Comparison with advanced DE algorithms

In order to evaluate the effectiveness of DE-DDI for the
advanced DE variants, two recently proposed DE variants
are employed, i.e., MDE_pBX and ODE.

In Table 1, DE-DDI can obtain significantly better re-
sults for MDE_pBX on nine functions. For ODE, DE-DDI

is significantly better on six functions and is worse on four
functions.

From Fig. 4, it is obvious that DE-DDI is better than the
advanced DE variants in terms of the convergence speed
for most of the selected functions at 30D.

Furthermore, the multi-problem Wilcoxon signed rank
tests are employed and the results are shown in Table 2. It
is obvious that DE-DDI can obtain the higher R+ values
than R— values in most cases. These results indicate that
DE-DDI is better than most of its corresponding advanced
DE variants.

5.5 Benefit of DE-DDI components

In this section, to identify the benefit of the components
to DE-DDI, two DE variants is considered, i.e., DE-DIRT
which only incorporates the neighborhood information of
distributed topology into DE, and DE-DIR which only
introduces the direction information into DE. In DE-
DIRT, all the vectors for mutation are selected from the
neighborhood of the current individual. In DE-DIR, based
on the fitness of the randomly selected base vector, the
whole population is partitioned into the better and worse
groups, and the difference vector is constructed as that in
DE-DDI. The experimental studies are carried out on the
25 functions at 30D, and two DE algorithms, i.e., DE/
rand/2 and DE/best/2, are employed for comparison.
Table 3 presents the results which including the results of
the single-problem Wilcoxon signed-rank test and the
average ranking values of the four DE variants by
Friedman test.
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Table 3 Mean and standard deviation of the best error values obtained by original DE, DE-DITR, DE-DIR and DE-DDI on all the functions at

30D

Func.  DE/rand/2 DE-DIRT/rand/2 DE-DIR/rand/2 DE-DDI/rand/2

F1 8.37e—001 2.86e—001 + 7.17¢—009  8.06e—009 + 2.12¢—004 1.42¢—004 + 1.04e—020 3.18e—020
F2 7.65e+003  1.80e4+003 +  4.24e+003 1.28e+003 + 1.10e+003 4.78e+002 +  5.56e+002  2.62e+002
F3 4.85e+007  1.30e+007 +  3.78e+007 1.28¢+007 +  1.51e+007 6.79¢+006 -+  1.28e+007 4.63e+006
F4 1.46e4+004  2.59¢4+003 +  1.17e+004 2.40e+003 + 5.07e+003 1.75¢+003 +  3.84e+003 1.97¢+003
F5 8.07e+003  7.28e+002 4+  6.90e+003  8.44e+002 +  4.45¢+003 4.87¢+002 +  3.65e+003  5.02e+002
Fo6 5.77e4+003  4.08e+003 +  2.46e+001 1.47e+000 +  5.03e+001 3.59¢+001 +  2.22e+001  2.20e+001
F7 7.20e+000  2.22e+000 +  5.06e—001 1.89¢e—001 + 8.58e—001 1.10e—001 + 3.31e—002 1.21e—001
F8 2.09¢e+001  6.06e—002 =  2.10e+001  5.12e—002 =  2.09e4+001 6.51e—002 = 2.09¢+001 4.91e—002
F9 2.10e+002  1.28e4+001 = 2.12e+002 9.69e+000 = 2.07e+002 1.06e+001 = 2.07e+002 1.08e+001
F10 2.42e+002  9.26e+000 2.34e+002 1.41e+001 +  2.32e+002 1.28e+001 +  2.29e+002  9.79e+000
F11 3.93e+4-001 1.30e+000 = 3.95e+4001 1.11e4+000 = 3.96e+001 1.19e4+000 = 3.96e+001 8.75e—001
F12 5.22e+005  4.47e4+004 5.12e+005 7.20e+004 = 4.95¢+005 5.02¢e+004 = 4.90e+005 5.94e+004
F13 2.02e+001  9.01e—001 +  1.92e+001 1.10e+000 +  1.92¢+001 1.59¢+000 + 1.91e+001 1.19e+000
F14 1.34e+001 1.58e—001 = 1.34e+001 1.45e—001 = 1.35e+001 9.64e—002 = 1.34e+001 1.48e—001
F15 4.05e+002  6.90e4+000 +  4.00e+002  0.00e+000 = 4.05e4+002  6.61e4+001 +  4.00e+002  0.00e+000
Fl16 2.69e+002  1.12e+001 2.63e+002 1.40e+001 +  2.58e+002 1.26e+001 +  2.50e+002 1.24e+001
F17 3.05e4+002  1.34e4+001 = 2.99¢+002 1.32e+001 +  2.86e+002 1.77¢+001 +  2.88e+002 2.70e+001
F18 9.40e+002  2.18e+000 +  9.30e+002  2.82¢e+000 +  9.28¢+002 3.15¢+000 +  9.20e+002 2.44e¢+000
F19 9.39e+002  3.20e4+000 +  9.30e+002  2.74e+000 +  9.27e¢+002  3.02¢+000 +  9.19e+002  3.03e+000
F20 9.39%¢ 002 3.51e+000 +  9.29e¢+002  2.54e+000 +  9.26e+002  2.75e+000 +  9.20e+002  2.94e+000
F21 5.00e+002  1.23e—001 +  5.00e+002  0.00e+000 +  5.00e+002  3.41e—005 +  5.00e4+002  1.53e—005
F22 1.02e+003  1.54e+001 +  1.01e+003 1.61e+001 +  9.76e+002 1.11e+001 +  9.70e+002 1.07e+001
F23 5.35e+002  1.24e000 +  5.34e+002 4.50e—004 + 534e+002 1.08¢e—003 + 5.34e+002 3.85e—004
F24 2.00e4+002  1.16e—001  +  2.00e+002  0.00e4+000 +  2.00e+002  8.96e—005 +  2.00e+002  0.00e+000
F25 2.29e+002  3.54e+000 +  2.18e+002  2.38¢+000 +  2.13e+002 1.46e+000 -+  2.12¢e+002 1.03e+000
wi/t/l — 17/8/0 19/6/0 20/5/0

ARV 354 2.72 2.32 1.42

Rank 4 3 2 1

Func.  DE/best/2 DE-DIRT/best/2 DE-DIR/best/2 DE-DDI/best/2

F1 7.66e—028 2.71e—028 = 8.96e—028 3.50e—028 = 6.59¢—028 2.19¢—028 — 1.59¢—009  7.54e—009
F2 1.06e—014  1.21e—014 + 231e—021 4.18e—021 — 3.36e—012  3.70e—012 4.74e—011 1.07e—010
F3 1.37e4+005  7.33e+004 +  9.18e+004 5.28¢+004 =  1.78¢+005 9.67e+004 =  1.98e+005 1.19e+005
F4 9.37e—005 1.36e—004 + 7.97e—006 1.37e—005 — 281e—004 3.77e—004 = 1.31e—004 2.90e—004
F5 3.83e+001  5.26e+001 — 1.73e+002  2.27e4+002 =  6.62e4001 1.20e4002 =  6.86e+001  6.61e+001
F6 6.38¢—001 1.49¢4+000 =  9.57e—001 1.74e+000 4.78¢—001  1.32¢e+000 —  8.87e+001 1.06e+002
F7 1.55e—002 1.61e—002 = 1.51e—002 1.32¢—002 = 1.21e—002 1.43e—002 1.26e—002  1.13e—002
F8 2.10e+001  3.58e—002 2.09¢+001  6.94e—002 +  2.09¢e+001 5.85e—002 2.09¢+001  5.18e—002
F9 1.82e+002  1.50e+001 = 1.85e+002 1.18e+001 = 1.86e+002  1.37e+001 +  1.74e+002  8.78e+000
F10 2.01e+002  1.31e+001 +  1.94e+002 1.50e+001 2.02e+002 1.66e+001 +  1.84e+002  1.30e+001
F11 3.95e+001  8.57e—001 = 3.93e+001 9.86e—001 =  3.92¢+001 1.02e+000 3.92¢e+001  1.22¢+000
F12 1.98e+003  4.16e+003 =  2.67e4+003  5.72e4+003 = 1.75¢+003 2.50e+003 =  1.42e+003 1.62e+003
F13 1.57e4+-001 1.46e+-000 1.55e+001 1.53e+000 = 1.53e+001 1.71e+000 =  1.58e+001 1.064-000
F14 1.34e+001 1.72e—001 = 1.34e+4001 1.41e—001 = 1.33e+001 2.10e—001 = 1.33e+001 2.08e—001
F15 321e+002  1.12e+002 =  3.18¢+002 1.09¢+002 —  3.71e+002  8.25e+001 3.09¢+002  9.28e+001
Fl16 2.64e+002  8.60e+001 = 3.27e+002 1.14e+002 = 2.30e+002 3.02¢e+001 =  2.32¢+002 4.63e+001
F17 3.29e4+002  1.09e4+002 = 3.45e+002 1.20e+002 =  2.87e+002 7.75e+001 + 2.35e+002 1.74e+001
F18 8.86e+002  4.37e+001 8.96e+002  4.31e+001 = 9.02e+002  2.14e+001 = 8.86e+02 4.41e4001
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Table 3 continued

Func.  DE/best/2 DE-DIRT/best/2 DE-DIR/best/2 DE-DDI/best/2

F19 8.99e+002  2.98¢+001 =  8.90e+002 4.63e+001 =  9.06e+002 1.99e4+000 =  8.96e+002 3.61e+001
F20 8.99e+002 2.98e+001 =  8.78e+002 5.50e+001 =  9.06e+002 2.40e+000 = 8.91e+002 4.06e+001
F21 5.25e+002  8.49e4+001 =  5.88e+002 1.71e+002 = 5.24e+002 8.31e+001 = 5.12e+002 6.00e+001
F22 9.27e+002  1.35e4+001 = 9.27e4002 1.41e+001 = 9.18e+002 1.34e+001 + 9.13e+002 1.36e+001
F23 5.69e+002  1.12e4+002 = 6.00e+002 1.68e+002 = 6.02e+002 1.53e4+002 = 5.68e+002 1.15¢+002
F24 2.00e+002  0.00e+000 = 2.00e+002  0.00e+000 =  2.00e4+002  0.00e+000 2.00e+002  0.00e+000
F25 2.09e+002  1.03e—001 = 2.21e4+002 5.82e+001 = 2.09e+002 1.57e—001 = 2.09e+002 9.31e—002
wit/l — 4/19/2 1/21/3 4/18/3

ARV  2.68 2.70 2.50 2.12

Rank 3 4 2 1

The better values in terms of mean solution error and standard deviation compared between DE and the corresponding DE-DDI variant are

highlighted in bold

Table 4 Results of the multi-problem Wilcoxon’s test between original DE, DE-DIRT, DE-DIR and DE-DDI for all the functions at 30D

Algorithm ) @) A3) @)
DE/rand/2 (1) - 1650 1600 10.00
DE-DIRT/rand/2 (2) 283.5 . 67.00 12.50
DE-DIR/rand/2 (3) 309.0  258.0 . 22.50
DE-DDI/rand/2 (4) 315.0  287.5-  302.5 -

Algorithm 1) @) 3) @)
DE/best/2 (1) - 179.0 173.0 86.00
DE-DIRT/best/2 (2) 121.0 . 139.5 93.50
DE-DIR/best/2 (3) 1520 1855 . 100.0
DE-DDI/best/2 (4) 2140 2315 200.0 -

Upper diagonal of level significance o = 0.9, lower diagonal level of significance o = 0.95

e The method in the row improves the method of the column

[0 The method in the column improves the method of the row

From Table 3, it is clear that DE-DIRT, DE-DIR and
DE-DDI are significantly better than its corresponding
original DE algorithm in these two cases. Specifically,
for DE/rand/2, DE-DIRT and DE-DIR significantly out-
perform the original DE algorithm on 17 and 19 func-
tions, respectively, while DE-DDI is significantly better
than the original DE algorithm on 20 functions and only
loses on no functions. For DE/best/2, DE-DIRT and DE-
DIR wins on four and one function, respectively, while
DE-DDI significantly obtains better results on four
functions.

From the average ranking values obtained by Friedman
test, DE-DDI achieves the best value for all the cases.
Furthermore, it is interesting to find out that DE-DIRT and
DE-DIR perform better than the original DE algorithms in
most of functions.

The multi-problem Wilcoxon signed rank tests between
the original DE, DE-DIRT, DE-DIR and DE-DDI are also
carried out and the results are presented in Table 4. It is
obvious that DE-DDI obtains the higher R+ values than
R— values in all the cases.

5.6 Parameter study

To test the influence of In on the performance of DE-
DDI, the used widely DE algorithm, i.e., DE/rand/1, is
used for comparison and several types of distributed
topology, i.e., 12, I3, 14 and I5, are considered. Figure 5
illustrates the distributed topology with different neigh-
borhood sizes.

From Table 5, it is clear that DE-DDI with different
In is better than DE/rand/1 in most of the cases except
I5. In the case of 12, I3, 14 and 15, DE-DDI is sig-
nificantly better than DE/rand/1 on 9, 9, 9 and 8 func-
tions, respectively. According to the results of the
statistical tests in Table 6, with 12, I3, 14 and I5, DE-
DDI can obtain the higher R+ values than R— values. It
indicates that DE-DDI with most of different distributed
topology types significantly outperforms DE/rand/1
overall.

According to the results in Tables 5 and 6, we observe
that DE-DDI is not sensitive to the distributed topology
type. For the previous works (Weber et al. 2011, 2010; Neri
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Table 6 Results of the multi-problem Wilcoxon’s test for DE/rand/1
versus DE-DDI with different type of distributed topology on all the
functions at 30D

Algorithm 1) 2) 3) 4) (5)

DE_rand_1 (1) - 130.0 98.0° 131.0 1115
DE-DDI/rand/1 with 12 (2) 195.0 - 171.5 215.0° 190.5
DE-DDI/rand/1 with I3 (3) 227.0 1535 - 254.5% 2125
DE-DDI/rand/1 with 14 (4) 1940 850 70.5° - 155.5

DE-DDI/rand/1 with I5 (5) 1885 109.5 1125 1445 -

Upper diagonal of level significance « = 0.9, lower diagonal level of
significance o = 0.95

? The method in the row improves the method of the column

° The method in the column improves the method of the row

et al. 2011), we choose 14 for DE-DDI for the benchmark
problems in this study.

5.7 Application to three real-world problems

In order to test the effectiveness of DE-DDI on real-world
problems, three problems are selected from (Das and Su-
ganthan 2010; Eshelman et al. 1997) for testing in this
section. Table 7 presents the results.

As Table 7 shows, it is clear that DE-DDI can obtain
the better solutions than the corresponding DE variants in
most of the cases. Specifically, for LEP and FMP, DE-
DDI both are better than the original and advanced DE
variants in three and two cases, respectively. And for
SRP, DE-DDI is better than DE in five cases. In sum, the
results of Table 7 indicate that DE-DDI is able to en-
hance the effectiveness of DE on the real-world problems
studied.

6 Conclusions

In this paper, a simple and effective framework, DE with
distributed direction information based mutation op-
erators (DE-DDI), has been presented for global nu-
merical optimization. First, a simple type of distributed
topology is used to define a neighborhood for each in-
dividual. Then, the direction information is introduced
into the mutation operator by constructing the difference
vector with the neighbors. In this way, the distributed
direction information composed by neighborhood and
direction information can be simultaneously and effec-
tively used to guide the search of DE. From the exten-
sive experimental study, it is clear that DE-DDI is able
to enhance the performance of most DE algorithms
considered.

Table 7 Mean and standard deviation of the best error values obtained by the de algorithms and DE-DDI for the real-world application problems

SRP

FMP

LEP

Algorithm

DE-DDI

DE

DE-DDI

DE

DE-DDI

DE

2.01e+000 3.75e—001

1.07e—001

1.86e+000  6.29¢+000 7.85¢+000 2.46e+000

3.61e+000 5.40e+000 7.24e+000 6.16e4+000 2.45e+000

9.16e—003  2.23e—010 1.68e—010 1.38e+001

3.36e—002

DE/rand/2
DE/best/2

1.92e+000 3.93e—001

1.16e—001

8.59e—015

1.99e—015

0.00e+000 0.00e+000

1.32e—001 1.46e+000 3.90e—001

6.03e+000 2.44e+000

1.05e4-001

1.72¢+000  6.69¢—004 2.28¢—003 9.60e+000 6.64e+000

1.24e+000

4.57e—001

DE/rand-to-best/1

1.76e4+000 5.51e—001 1.58e+000 2.21e—001

4.09¢4+000  9.46e+000 7.19e+000

1.41e4-001

3.17e+000 2.84e+000

8.12e—001

DE/current-to-best/1

CoDE

1.57e+000 2.80e—001

8.30e—002

1.78¢+000 2.00e+000 2.51e—001

5.79e+000  2.16e+000

8.74e+000

8.88e—002 7.49¢—002 5.53e+000 2.91e+000

2.52¢—003 6.30e—003 5.78¢+002 2.82e+002 3.87¢+000 6.63e+000 2.55e+001

2.32e+002  4.08e+001

3.06e—001

2.99e+000

MDE_pBX

The better values in terms of mean solution error and standard deviation compared between DE and the corresponding DE-DDI variant are highlighted in bold
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In the future, DE-DDI will be applied to other DE
variants and more real-world problems.
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