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Abstract With the rapid advance in networking, data

storage, and data collection technique, big data is fast ex-

panding in various scientific and engineering fields, such as

physical, social and biological sciences. Thanks to solving

difficult optimization problems without detailed prior

knowledge, evolutionary algorithm (EA) has become a

powerful optimization technique for dealing with complex

problems in big data. This study focuses on differential

evolution (DE), which is one of the most successful and

popular EAs and distinguishes from other EAs with its

mutation mechanism. However, for the mutation operators

of most DE algorithms, the base and difference vectors are

always randomly selected from the whole population,

where the population information is not utilized effec-

tively. In this study, a novel DE framework with distributed

direction information based mutation operators (DE-DDI)

is proposed. In DE-DDI, the distributed topology is em-

ployed to create a neighborhood for each individual in the

population first and then the direction information derived

from the neighbors is introduced into the mutation operator

of DE. Therefore, the neighborhood and direction infor-

mation are fully utilized to exploit the regions of better

individuals and guide the search to the promising area. In

order to test the performance of the proposed algorithm,

DE-DDI is applied to several original DE algorithms, as

well as the advanced DE variants. The results clearly

indicate that DE-DDI is able to improve the performance of

the DE algorithms studied.

Keywords Differential evolution � Distributed topology �
Neighborhood information � Direction information �
Mutation strategy � Big data

1 Introduction

During the past decade, large amounts of data have been

generated in various scientific and engineering fields due to

the development of high throughput technologies. With

such large size of data, it becomes difficult to perform

effective analysis by the existing traditional methods. This

promotes the rise of big data, which has drawn huge at-

tention from researchers in information sciences, policy

and decision makers in governments and enterprises (Philip

Chen and Zhang 2014). Big data is characterized by large-

volume, complex, growing data with multiple, autonomous

sources. Due to these characteristics, various challenges

and issues related to big data are put forward, mainly ex-

isting in difficulties in data capture, data storage, and data

analysis and data visualization. Recently, more and more

fields involve big data, such as social network, bioinfor-

matics, e-commerce, and so on. In order to capture the

value from big data, a lot of techniques have been devel-

oped (Philip Chen and Zhang 2014), e.g., optimization

methods, data mining, knowledge-based platform, social

network analysis, etc. These big data techniques involve

many disciplines and overlap with each other frequently

(Philip Chen and Zhang 2014).

For the big data problems, they always have the char-

acteristics of the large search space, sparse and incomplete

data, potentially complex fitness landscapes and dynamic
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and uncertain (Thomas and Jin 2014). Inspired from natural

evolution process, evolutionary algorithms (EAs) are suit-

able for dealing with these problems, as they require little

or no prior knowledge of problems and can cope with

multiple objectives and constraints based on data prove-

nance or heterogeneous sources. Thus, it makes EAs a

powerful tool for dealing with complex problems in big

data. As an optimization technique for big data, EAs have

the great potential in tacking complex problems, and have

attracted great attention from both academia and industry

in many fields. They also have been applied successfully to

solve the quantitative problems in various fields, such as

physics, biology, engineering, and so on.

Differential evolution (DE), proposed in (Storn and

Price 1997), is a simple yet powerful EA for global nu-

merical optimization. Recently, DE has become one of the

most widely used for handling global optimization prob-

lems (Das and Suganthan 2011). Furthermore, DE has been

successfully applied in many science and engineering

fields, such as pattern recognition (Campomanes-Álvarez

et al. 2014), signal processing (Das and Konar 2006),

satellite communications (Wang and Cai 2015), vehicle

routing problem (Zhou and Wang 2015), and so on.

During the last decade, there are many enhanced DE

variants proposed in the literature (Das and Suganthan

2011). In these advanced DE variants, modifications mostly

focus on devising the new mutation operators (Das et al.

2009; Zhang and Sanderson 2009; Wang et al. 2014a),

employing the self-adaptive strategies for control pa-

rameters (Qin et al. 2009; Yang et al. 2014), proposing the

ensemble strategies (Tang et al. 2014), developing the

hybrid DE with other optimization methods (Sun et al.

2005; Cai et al. 2014a; Li et al. 2015) and population

topology (Dorronsoro and Bouvry 2011), etc.

Generally, the mutant vector can be treated as the lead

individual to search the decision space and is constructed by

adding a scaled difference vector to a base vector. However,

we have observed that these two vectors (i.e., the base and

difference vectors) in most DE variants are always ran-

domly selected. In this case, the population information

could not be fully utilized to guide the search of DE.

In order to alleviate this drawback and improve the

performance of DE, a new DE framework with distributed

topology based mutation operator (DE-DDI) is proposed in

this study. In DE-DDI, a distributed topology is first em-

ployed to define a neighborhood for each vector. Then, the

neighbors of each vector are divided into better and worse

groups according to their fitness compared to that of it.

Finally, the direction information is introduced into muta-

tion by selecting the vectors from the better and worse

groups, respectively to construct the difference vector. In

this way, DE-DDI not only utilizes the information of

neighboring individuals to exploit the regions of minima

but also incorporates the direction information of popula-

tion to prevent individuals from entering an undesired re-

gion and move to a promising area. Hence, the population

information composed by neighborhood information and

direction information can be simultaneously and fully uti-

lized in DE-DDI to guide the search of DE.

To evaluate the effectiveness of the proposed method,

extensive experiments have been carried out on CEC 2005.

With the analysis of the extensive experiments, we can

clearly find that DE-DDI is able to improve the perfor-

mance of the DE algorithms studied.

The main contributions of this paper include the

following:

• Both neighborhood and direction information are fully

and simultaneously utilized in the mutation strategy to

generate the mutant.

• DE-DDI provides a simple yet powerful method for

improving the explorative ability of DE. In addition,

DE-DDI is simple and easily applied to other DE

variants.

• The extensive experiments are carried out to show the

effectiveness of DE-DDI. The results demonstrate that

DDI is able to enhance the performance of most DE

algorithms studied.

The rest of this paper is organized as follows: In Sect. 2,

the original DE is introduced. Section 3 briefly reviews

some related work. The proposed DE-DDI is presented in

detail in Sect. 4. In Sect. 5, experimental results are re-

ported. Finally, the conclusions are drawn in Sect. 6.

2 DE

In this study, DE is for solving the numerical optimization

problem. Without loss of generality, we consider the op-

timization problem to be minimized is f ðXÞ, X ¼
½x1; x2; . . .; xD� 2 RD and D is the dimension of the decision

variables. DE evolves a population of NP vectors repre-

senting the candidate solutions. Each vector is denoted as

Xi;G ¼ ½x1i;G; x2i;G; . . .; xDi;G�, where i = 1, 2… NP, NP is the

size of the population and G is the number of current

generation.

2.1 Initialization

In DE, the initial population should cover the entire search

space as much as possible by uniformly randomizing in-

dividuals within the search space constrained by the pre-

scribed minimum and maximum bounds. That is, the jth

parameter of the ith individual is initialized by

x
j
i;G ¼ Lj þ randð0; 1Þ � ðUj � LjÞ ð1Þ
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where randð0; 1Þ represents a uniformly distributed random

number within the range (0, 1) and Lj and Uj represents the

lower and upper bounds of the jth variable, respectively.

2.2 Mutation

Following initialization, DE employs the mutation strategy

to generate a mutant vector Vi,G with respect to each in-

dividual Xi,G (called target vector) in the current popula-

tion. Six most frequently used mutation strategies in the

literature are listed as follows:

• DE/rand/1

Vi;G ¼ Xr1;G þ F � ðXr2;G � Xr3;GÞ ð2Þ

• DE/rand/2

Vi;G ¼ Xr1;G þ F � ðXr2;G � Xr3;GÞ þ F � ðXr4;G � Xr5;GÞ
ð3Þ

• DE/best/1

Vi;G ¼ Xbest;G þ F � ðXr1;G � Xr2;GÞ ð4Þ

• DE/best/2

Vi;G ¼ Xbest;G þ F � ðXr1;G � Xr2;GÞ þ F � ðXr3;G � Xr4;GÞ
ð5Þ

• DE/current-to-best/

Vi;G ¼ Xi;G þ F � ðXbest;G � Xi;GÞ þ F � ðXr1;G � Xr2;GÞ
ð6Þ

• DE/rand-to-best/1

Vi;G ¼ Xr1;G þ F � ðXbest;G � Xr1;GÞ þ F � ðXr2;G � Xr3;GÞ
ð7Þ

The indices r1, r2, r3, r4 and r5 are mutually exclusive

integers randomly generated within the range (1, NP),

which are also different from the index i. Xbest,G is the best

individual vector at generation G, and the mutation factor

F is a positive control parameter for scaling the difference

vector. More details can be found in (Das and Suganthan

2011; Storn and Price 1997).

2.3 Crossover

After the mutation phase, crossover operator is applied to

each pair of Xi,G and Vi,G to generate a trial vector Ui,G.

There are two kinds of crossover scheme: binomial and

exponential. The binomial crossover is widely used, which

can be defined as follows:

u
j
i;G ¼

v
j
i;G if randð0; 1Þ�CR or j ¼ jrand;

x
j
i;G otherwise,

(
ð8Þ

where CR [ (0, 1) is called the crossover rate. jrand is a

randomly chosen integer in the range (1, D). If u
j
i;G is out of

the boundary, we reinitialized it within the range (Lj, Uj).

2.4 Selection

The selection operator selects the better one from each pair

of Xi,G and Ui,G for the next generation. The selection

operator is given by

Xi;Gþ1 ¼
Ui;G if f ðUi;GÞ� f ðXi;GÞ;
Xi;G otherwise:

�
ð9Þ

3 Related work

In the section, we focus on the related work on how the

population information, especially neighborhood and di-

rection information, has been utilized in DE to improve its

performance.

3.1 Neighborhood information

There are two main types of neighborhood information:

one relies on the population topology and the other on the

geographical locations on the fitness landscape. More de-

tails about the neighborhood concepts utilized in DE could

be found in (Epitropakis et al. 2011).

In the first one, the neighbors of each individual do not

necessary lie in the vicinity of its topological region in the

search space. Different from the original DE algorithm,

many DE variants utilize the neighborhood information

with the structured population. In these DE variants, the

individuals for the mutation strategies are selected ac-

cording to a neighbor list constructed from the population

topologies. Two main canonical kinds of structured

population in DE could be found in literature, i.e., cellular

DE (cDE) (Noman and Iba 2011) and distributed DE (dDE)

(Weber et al. 2010, 2011; Neri et al. 2011). Recently,

several population topologies, e.g., cellular, distributed,

ring, small-world, were introduced in DE to improve its

performance (Dorronsoro and Bouvry 2011).

The second kind of neighborhood information is derived

from the current population during the evolutionary pro-

cess. In this, we name some individuals be the neighbors of

one individual when they locate in the vicinity of its
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topological region in the search space. In (Epitropakis et al.

2011), a proximity-based DE framework (ProDE) was

proposed by using an affinity matrix based on the Eu-

clidean distance to select the individuals for the mutation

strategies. For improving the performance of DE, the

learning-enhanced DE (LeDE) was proposed in (Cai et al.

2012). In LeDE, the neighborhood of each individual,

which involved in the intra-cluster learning strategy, is

defined based on the identified clusters. In (Wang et al.

2014b), by the cooperation of objective-wise learning

process, all the objectives of the considered solution could

be simultaneously guided to optimize in parallel.

3.2 Direction information

In DE, the difference vector of the mutation strategies is

always be constructed in a random manner. In order to

overcome this drawback of DE, several DE variants are

proposed by using the direction information to construct

the difference vector.

In (Wang and Xiang 2008), a new mutation strategy,

which is identified as DE/rand/±mean, was proposed. In

this strategy, the population is partitioned into two sub-

populations according to the mean fitness value of all in-

dividuals. Then the different vector is constructed by ran-

domly selecting two vectors from the better and worse sub-

population, respectively. Recently, a novel DE framework,

DE with neighborhood and direction information (NDi-

DE), was proposed by designing three types of direction

information for mutation (Cai and Wang 2013). In NDi-DE,

the direction information is derived from two sources,

namely, the best and worst near-neighbor individuals. Then,

three types of direction information based on the direction

information with different sources are introduced to guide

search. In the further work (Cai et al. 2014b; Cai and Du

2014), an adaptive operator selection (AOS) mechanism

was introduced into NDi-DE for different mutation strate-

gies. In this way, a good balance between exploration and

exploitation of the novel DE framework (aNDi-DE) could

be dynamically achieved. In (Bi and Xiao 2011), by using

the direction information with the current best solution and

the best previous solution of each individual, the authors

proposed a classification-based self-adaptive DE.

4 DE-DDI

In this section, the proposed framework, i.e., DE-DDI, is

described in detail. First, the motivation of this study is

given first. Second, the two main components of DDI, i.e.,

distributed topology-based neighborhood and mutation

with direction information, are presented. Third, the com-

plete proposed framework is shown.

4.1 Motivations

As mentioned above, both neighborhood information and

direction information can be utilized to improve the per-

formance of DE, but they are not fully and simultaneously

exploited in the evolutionary process for most DE algo-

rithms. Furthermore, in most DE algorithms, the base and

difference vectors are randomly selected for mutation,

which cannot utilize the population information to guide

the search effectively. Thus, based on these considerations,

we utilize the population information composed by

neighborhood and direction information to propose a new

mutation operator to enhance the performance of DE.

4.2 Distributed topology-based neighborhood

In order to define a neighborhood for each individual in the

population, a distributed topology with NP individuals is

employed first. In this topology (with four islands illus-

trated in Fig. 1), the population is partitioned into four is-

lands, which are evolved by the independent DE. We also

refer to the populations in the islands as subpopulations of

the algorithm, as it is commonly done in the literature. In

this way, individuals in the same island are neighbors.

For the individuals in different islands to communicate

with each other, when one island does not evolve a better

individual for Q generations, we employ a process called

recombination. In this process, each island will be recon-

structed by a same number of individuals, which are ran-

domly selected from the current whole population. This

will allow the algorithm to better benefit from the diversity

of solutions in the different islands.

4.3 Mutation with direction information

Based on the defined neighbors with distributed topology, the

direction information is introduced into mutation operator by

selecting several individuals to construct the difference vec-

tors. The base vector, i.e., Xr1,G in DE/rand/1, is randomly

Entire 
population

Island

Fig. 1 I4
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selected from the neighbors of Xi, first. Then, with respect to

the fitness of the base vector, all of the neighbors of Xi are

partitioned into the better and worse groups. Finally, the ter-

minal point of the difference vector, i.e., Xr2 in DE/rand/1, is

randomly selected from the better group and the start point, i.e.,

Xr3 in DE/rand/1, is randomly selected from the worse group.

In this way, the difference vector with good direction infor-

mation that directing at the better individual from the worse

one can be obtained to guide the search in the solution space.

4.4 The framework of DE-DDI

As described above, it’s clear that DE-DDI works through

a simple cycle of stages, presented in Fig. 2. In this paper,

we name the complete framework of DE-DDI with the DE/

rand/1 strategy as DE-DDI/rand/1. And the corresponding

pseudo-code of DE-DDI/rand/1 is shown in Algorithm 1

where the differences with respect to DE/rand/1 are high-

lighted with ‘‘*’’. It is clear that the proposed DE-DDI only

affects the mutation stage, hence it could be directly and

easily applied to most of the DE algorithms.

For the mutation operators which employ the best in-

dividual (e.g., DE/best/1), when applying DE-DDI to it, the

best one in the neighborhood of the current individual will

be selected as the best individual in DE-DDI. As for con-

structing the difference vector, when the base vector is the

best or worst vector in the neighborhood, the vectors are

randomly selected from the neighborhood and the differ-

ence vector will be constructed by directing at the better

solution from the worse one.

5 Experimental results and analysis

In order to evaluate the performance of DE-DDI, 25 classic

benchmark functions from the CEC2005 special session on

real-parameter optimization (Suganthan et al. 2005) and

three real-world problems (Eshelman et al. 1997; Das and

Suganthan 2010) are used. In this section, the benchmark

functions are presented first. Second, the experimental se-

tup is shown. Finally, the simulation results are analyzed

and discussed.

5.1 Benchmark function

In this section, 25 benchmark functions are used, denoted

as F1–F25, which are from the special session on real-

parameter optimization of the 2005 IEEE Congress on

Evolutionary Computation (CEC 2005). According to the,

they can be categorized into four groups: unimodal func-

tions (F1–F5), basic multimodal functions (F6–F12), ex-

panded multimodal functions (F13–F14) and hybrid

composition functions (F15–F25).

5.2 Parameter settings

In order to maintain a fair and reliable comparison between

DE-DDI and its corresponding competitors, the same ran-

dom initial population is employed in this study. And the

parameters are set as follows unless a change is mentioned.

• Dimension: D = 30;

• Population size: NP = 100;

• Mutation factor: F = 0.5;

• Crossover rate: CR = 0.9;

• Type of distributed topology: I4 (n = 4);

• Stagnation tolerance: Q = 20;

• Number of runs: NumR = 25;

• Maximum number of function evaluations:

MNFEs = 10,000 9 D.

In the experiments, the comparisons between the four

original DE algorithms (i.e., DE/rand/2, DE/best/2, DE/

current-to-best/1 and DE/rand-to-best/1) and their corre-

sponding DE-DDI algorithms are conducted first. Then,

we compare the performance of two advanced DE

Algorithm 1 DE-DDI/rand/1
1: Generate the initial population PG and set G = 1;

2: Evaluate the fitness for each individual in PG;

3: While the terminated condition is not satisfied do

4:   For each individual Xi,G do

5: *Randomly select the base vector Xr1 from the

neighborhood of Xi,G;

6: *Partition all the neighbors of Xi,G into better and

worse groups by comparing with the fitness of Xi,G;

7: *Randomly select Xr2, Xr3 from the better and worse 

groups respectively;

8: Use Eq. (2) to generate a mutant vector

9: Use Eq. (8) to generate a trial vector;

10: Use Eq. (9) to determine the survived vector;

11:   End For

12:   Set G = G + 1

13: End while

Fig. 2 Main stages of the DE-DDI
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variants with the corresponding DE-DDI variants,

namely MDE_pBX (Islam et al. 2012) and ODE (Rah-

namayan et al. 2008). All the parameters of these DE

variants are set as their original papers. The simulations

are carried out on an Intel Core i3 duo personal com-

puter with 3.30-GHz central processing unit and 4-GB

random access memory.

In order to show the significant differences among the

algorithms, several nonparametric statistical tests (Garcı́a

et al. 2009; Derrac et al. 2011), are also carried out by the

KEEL software (Alcalá-Fdez et al. 2009). The results of

the single-problem Wilcoxon signed-rank test, at

a = 0.05 are summarized in the last row of the tables as

‘‘w/t/l’’, which means that DE-DDI wins, ties and loses on

w, t and l functions, compared with its corresponding

competitor.

5.3 Comparison with original DE algorithms

In this section, several classic DE mutation operators [see

Eqs. (2)–(7)] are used in the experimental study. The re-

sults for all functions at D = 30 are shown in Table 1.

For all the functions at 30D, Table 1 shows that in most

of the test functions DE-DDI provides significantly better

results compared with their corresponding original DE

methods. Specifically, for DE/rand/2, it exhibits substantial

performance improvements in 20 out of 25 functions. For

DE/best/2, DE-DDI is significantly better on four func-

tions. For the exploitation strategy, DE-DDI can enhance

the explorative ability of DE/current-to-best/1 to yield

significantly performance improvement on 19 out of 25

functions. For DE/rand-to-best/1, DE-DDI is also sig-

nificantly better on 12 functions.

Table 2 Results of the multi-problem Wilcoxon’s test for DE-DDI versus the corresponding DE algorithm for all the functions at 30D

Algorithm w/t/l R? R- p value a = 0.05 a = 0.1

DE-DDI/rand/2 vs DE/rand/2 20/5/0 315 10 3.20E-05 ? ?

DE-DDI/best/2 vs DE/best/2 4/18/3 214 86 6.34E-02 = ?

E-DDI/current-to-best/1 vs DE/current-to-best/ 19/5/1 294 6 3.70E-05 ? ?

DE-DDI/rand-to-best/1 vs DE/rand-to-best/1 12/8/5 259 66 9.06E-03 ? ?

MDE_pBX-DDI vs MDE_pBX 9/15/1 191 134 4.27E-01 = =

ODE-DDI vs O DE 6/15/4 170.5 129.5 5.47E-01 = =

0 500 1000 1500 2000 2500 3000
105

106

107

108

109

DE/rand/2
DE-DDI/rand/2
DE/best/2
DE-DDI/best/2
DE/current-to-best/1
DE-DDI/current-to-best/1
DE/rand-to-best/1
DE-DDI/rand-to-best/1

Generations
(a) F3

S
ol

ut
io

n 
er

ro
r

0 500 1000 1500 2000 2500 3000

102

So
lu

tio
n 

er
ro

r

Generations
(b) F10

DE/rand/2
DE-DDI/rand/2
DE/best/2
DE-DDI/best/2
DE/current-to-best/1
DE-DDI/current-to-best/1
DE/rand-to-best/1
DE-DDI/rand-to-best/1
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Figure 3 shows that the convergence speed of DE-DDI

is better than most of the corresponding original DE al-

gorithms for most selected functions.

Furthermore, for clearly presenting the significant dif-

ferences between DE-DDI and its corresponding DE

method, the multi-problem Wilcoxon signed-rank test is

also carried out on all the problems at 30D. The results are

shown in Table 2. It is clear that DE-DDI can obtain the

higher R? values than R- values in all the cases. In ad-

dition, the p value in most cases are less than 0.05, which

means that DE-DDI is significantly better than most of the

original DE algorithms.

5.4 Comparison with advanced DE algorithms

In order to evaluate the effectiveness of DE-DDI for the

advanced DE variants, two recently proposed DE variants

are employed, i.e., MDE_pBX and ODE.

In Table 1, DE-DDI can obtain significantly better re-

sults for MDE_pBX on nine functions. For ODE, DE-DDI

is significantly better on six functions and is worse on four

functions.

From Fig. 4, it is obvious that DE-DDI is better than the

advanced DE variants in terms of the convergence speed

for most of the selected functions at 30D.

Furthermore, the multi-problem Wilcoxon signed rank

tests are employed and the results are shown in Table 2. It

is obvious that DE-DDI can obtain the higher R? values

than R- values in most cases. These results indicate that

DE-DDI is better than most of its corresponding advanced

DE variants.

5.5 Benefit of DE-DDI components

In this section, to identify the benefit of the components

to DE-DDI, two DE variants is considered, i.e., DE-DIRT

which only incorporates the neighborhood information of

distributed topology into DE, and DE-DIR which only

introduces the direction information into DE. In DE-

DIRT, all the vectors for mutation are selected from the

neighborhood of the current individual. In DE-DIR, based

on the fitness of the randomly selected base vector, the

whole population is partitioned into the better and worse

groups, and the difference vector is constructed as that in

DE-DDI. The experimental studies are carried out on the

25 functions at 30D, and two DE algorithms, i.e., DE/

rand/2 and DE/best/2, are employed for comparison.

Table 3 presents the results which including the results of

the single-problem Wilcoxon signed-rank test and the

average ranking values of the four DE variants by

Friedman test.
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Table 3 Mean and standard deviation of the best error values obtained by original DE, DE-DITR, DE-DIR and DE-DDI on all the functions at

30D

Func. DE/rand/2 DE-DIRT/rand/2 DE-DIR/rand/2 DE-DDI/rand/2

F1 8.37e-001 2.86e-001 ? 7.17e-009 8.06e-009 ? 2.12e-004 1.42e-004 ? 1.04e-020 3.18e-020

F2 7.65e?003 1.80e?003 ? 4.24e1003 1.28e1003 ? 1.10e1003 4.78e1002 ? 5.56e1002 2.62e1002

F3 4.85e?007 1.30e?007 ? 3.78e1007 1.28e1007 ? 1.51e1007 6.79e1006 ? 1.28e1007 4.63e1006

F4 1.46e?004 2.59e?003 ? 1.17e1004 2.40e1003 ? 5.07e1003 1.75e1003 ? 3.84e1003 1.97e1003

F5 8.07e?003 7.28e?002 ? 6.90e1003 8.44e1002 ? 4.45e1003 4.87e1002 ? 3.65e1003 5.02e1002

F6 5.77e?003 4.08e?003 ? 2.46e1001 1.47e1000 ? 5.03e1001 3.59e1001 ? 2.22e1001 2.20e1001

F7 7.20e?000 2.22e?000 ? 5.06e-001 1.89e-001 ? 8.58e-001 1.10e-001 ? 3.31e-002 1.21e-001

F8 2.09e?001 6.06e-002 = 2.10e?001 5.12e-002 = 2.09e?001 6.51e-002 = 2.09e1001 4.91e-002

F9 2.10e?002 1.28e?001 = 2.12e?002 9.69e?000 = 2.07e1002 1.06e1001 = 2.07e1002 1.08e1001

F10 2.42e?002 9.26e?000 = 2.34e1002 1.41e1001 ? 2.32e1002 1.28e1001 ? 2.29e1002 9.79e1000

F11 3.93e?001 1.30e?000 = 3.95e?001 1.11e?000 = 3.96e?001 1.19e?000 = 3.96e?001 8.75e-001

F12 5.22e?005 4.47e?004 = 5.12e1005 7.20e1004 = 4.95e1005 5.02e1004 = 4.90e1005 5.94e1004

F13 2.02e?001 9.01e-001 ? 1.92e1001 1.10e1000 ? 1.92e1001 1.59e1000 ? 1.91e1001 1.19e1000

F14 1.34e?001 1.58e-001 = 1.34e?001 1.45e-001 = 1.35e?001 9.64e-002 = 1.34e1001 1.48e-001

F15 4.05e?002 6.90e?000 ? 4.00e1002 0.00e1000 = 4.05e?002 6.61e?001 ? 4.00e1002 0.00e1000

F16 2.69e?002 1.12e?001 = 2.63e1002 1.40e1001 ? 2.58e1002 1.26e1001 ? 2.50e1002 1.24e1001

F17 3.05e?002 1.34e?001 = 2.99e1002 1.32e1001 ? 2.86e1002 1.77e1001 ? 2.88e1002 2.70e1001

F18 9.40e?002 2.18e?000 ? 9.30e1002 2.82e1000 ? 9.28e1002 3.15e1000 ? 9.20e1002 2.44e1000

F19 9.39e?002 3.20e?000 ? 9.30e1002 2.74e1000 ? 9.27e1002 3.02e1000 ? 9.19e1002 3.03e1000

F20 9.39e 002 3.51e?000 ? 9.29e1002 2.54e1000 ? 9.26e1002 2.75e1000 ? 9.20e1002 2.94e1000

F21 5.00e?002 1.23e-001 ? 5.00e?002 0.00e?000 ? 5.00e?002 3.41e-005 ? 5.00e?002 1.53e-005

F22 1.02e?003 1.54e?001 ? 1.01e1003 1.61e1001 ? 9.76e1002 1.11e1001 ? 9.70e1002 1.07e1001

F23 5.35e?002 1.24e000 ? 5.34e1002 4.50e-004 ? 5.34e1002 1.08e-003 ? 5.34e1002 3.85e-004

F24 2.00e?002 1.16e-001 ? 2.00e?002 0.00e?000 ? 2.00e?002 8.96e-005 ? 2.00e?002 0.00e?000

F25 2.29e?002 3.54e?000 ? 2.18e1002 2.38e1000 ? 2.13e1002 1.46e1000 ? 2.12e1002 1.03e1000

w/t/l - 17/8/0 19/6/0 20/5/0

ARV 3.54 2.72 2.32 1.42

Rank 4 3 2 1

Func. DE/best/2 DE-DIRT/best/2 DE-DIR/best/2 DE-DDI/best/2

F1 7.66e-028 2.71e-028 = 8.96e-028 3.50e-028 = 6.59e-028 2.19e-028 - 1.59e-009 7.54e-009

F2 1.06e-014 1.21e-014 ? 2.31e-021 4.18e-021 - 3.36e-012 3.70e-012 - 4.74e-011 1.07e-010

F3 1.37e?005 7.33e?004 ? 9.18e1004 5.28e1004 = 1.78e?005 9.67e?004 = 1.98e?005 1.19e?005

F4 9.37e-005 1.36e-004 ? 7.97e-006 1.37e-005 - 2.81e-004 3.77e-004 = 1.31e-004 2.90e-004

F5 3.83e?001 5.26e?001 - 1.73e?002 2.27e?002 = 6.62e?001 1.20e?002 = 6.86e?001 6.61e?001

F6 6.38e-001 1.49e?000 = 9.57e-001 1.74e?000 = 4.78e-001 1.32e1000 - 8.87e?001 1.06e?002

F7 1.55e-002 1.61e-002 = 1.51e-002 1.32e-002 = 1.21e-002 1.43e-002 = 1.26e-002 1.13e-002

F8 2.10e?001 3.58e-002 = 2.09e1001 6.94e-002 ? 2.09e1001 5.85e-002 = 2.09e1001 5.18e-002

F9 1.82e?002 1.50e?001 = 1.85e?002 1.18e?001 = 1.86e?002 1.37e?001 ? 1.74e1002 8.78e1000

F10 2.01e?002 1.31e?001 ? 1.94e1002 1.50e1001 = 2.02e?002 1.66e?001 ? 1.84e1002 1.30e1001

F11 3.95e?001 8.57e-001 = 3.93e1001 9.86e-001 = 3.92e1001 1.02e1000 = 3.92e1001 1.22e1000

F12 1.98e?003 4.16e?003 = 2.67e?003 5.72e?003 = 1.75e1003 2.50e1003 = 1.42e1003 1.62e1003

F13 1.57e?001 1.46e?000 = 1.55e1001 1.53e1000 = 1.53e1001 1.71e1000 = 1.58e?001 1.06?000

F14 1.34e?001 1.72e-001 = 1.34e?001 1.41e-001 = 1.33e1001 2.10e-001 = 1.33e1001 2.08e-001

F15 3.21e?002 1.12e?002 = 3.18e1002 1.09e1002 - 3.71e?002 8.25e?001 = 3.09e1002 9.28e1001

F16 2.64e?002 8.60e?001 = 3.27e?002 1.14e?002 = 2.30e1002 3.02e1001 = 2.32e1002 4.63e1001

F17 3.29e?002 1.09e?002 = 3.45e?002 1.20e?002 = 2.87e1002 7.75e1001 ? 2.35e1002 1.74e1001

F18 8.86e?002 4.37e?001 - 8.96e?002 4.31e?001 = 9.02e?002 2.14e?001 = 8.86e?02 4.41e?001
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From Table 3, it is clear that DE-DIRT, DE-DIR and

DE-DDI are significantly better than its corresponding

original DE algorithm in these two cases. Specifically,

for DE/rand/2, DE-DIRT and DE-DIR significantly out-

perform the original DE algorithm on 17 and 19 func-

tions, respectively, while DE-DDI is significantly better

than the original DE algorithm on 20 functions and only

loses on no functions. For DE/best/2, DE-DIRT and DE-

DIR wins on four and one function, respectively, while

DE-DDI significantly obtains better results on four

functions.

From the average ranking values obtained by Friedman

test, DE-DDI achieves the best value for all the cases.

Furthermore, it is interesting to find out that DE-DIRT and

DE-DIR perform better than the original DE algorithms in

most of functions.

The multi-problem Wilcoxon signed rank tests between

the original DE, DE-DIRT, DE-DIR and DE-DDI are also

carried out and the results are presented in Table 4. It is

obvious that DE-DDI obtains the higher R? values than

R- values in all the cases.

5.6 Parameter study

To test the influence of In on the performance of DE-

DDI, the used widely DE algorithm, i.e., DE/rand/1, is

used for comparison and several types of distributed

topology, i.e., I2, I3, I4 and I5, are considered. Figure 5

illustrates the distributed topology with different neigh-

borhood sizes.

From Table 5, it is clear that DE-DDI with different

In is better than DE/rand/1 in most of the cases except

I5. In the case of I2, I3, I4 and I5, DE-DDI is sig-

nificantly better than DE/rand/1 on 9, 9, 9 and 8 func-

tions, respectively. According to the results of the

statistical tests in Table 6, with I2, I3, I4 and I5, DE-

DDI can obtain the higher R? values than R- values. It

indicates that DE-DDI with most of different distributed

topology types significantly outperforms DE/rand/1

overall.

According to the results in Tables 5 and 6, we observe

that DE-DDI is not sensitive to the distributed topology

type. For the previous works (Weber et al. 2011, 2010; Neri

Table 3 continued

Func. DE/best/2 DE-DIRT/best/2 DE-DIR/best/2 DE-DDI/best/2

F19 8.99e?002 2.98e?001 = 8.90e1002 4.63e1001 = 9.06e?002 1.99e?000 = 8.96e1002 3.61e1001

F20 8.99e?002 2.98e?001 = 8.78e1002 5.50e1001 = 9.06e?002 2.40e?000 = 8.91e1002 4.06e1001

F21 5.25e?002 8.49e?001 = 5.88e?002 1.71e?002 = 5.24e1002 8.31e1001 = 5.12e1002 6.00e1001

F22 9.27e?002 1.35e?001 = 9.27e?002 1.41e?001 = 9.18e1002 1.34e1001 ? 9.13e1002 1.36e1001

F23 5.69e?002 1.12e?002 = 6.00e?002 1.68e?002 = 6.02e?002 1.53e?002 = 5.68e1002 1.15e1002

F24 2.00e?002 0.00e?000 = 2.00e?002 0.00e?000 = 2.00e?002 0.00e?000 = 2.00e?002 0.00e?000

F25 2.09e?002 1.03e-001 = 2.21e?002 5.82e?001 = 2.09e?002 1.57e-001 = 2.09e?002 9.31e-002

w/t/l - 4/19/2 1/21/3 4/18/3

ARV 2.68 2.70 2.50 2.12

Rank 3 4 2 1

The better values in terms of mean solution error and standard deviation compared between DE and the corresponding DE-DDI variant are

highlighted in bold

Table 4 Results of the multi-problem Wilcoxon’s test between original DE, DE-DIRT, DE-DIR and DE-DDI for all the functions at 30D

Upper diagonal of level significance a = 0.9, lower diagonal level of significance a = 0.95

• The method in the row improves the method of the column

h The method in the column improves the method of the row
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et al. 2011), we choose I4 for DE-DDI for the benchmark

problems in this study.

5.7 Application to three real-world problems

In order to test the effectiveness of DE-DDI on real-world

problems, three problems are selected from (Das and Su-

ganthan 2010; Eshelman et al. 1997) for testing in this

section. Table 7 presents the results.

As Table 7 shows, it is clear that DE-DDI can obtain

the better solutions than the corresponding DE variants in

most of the cases. Specifically, for LEP and FMP, DE-

DDI both are better than the original and advanced DE

variants in three and two cases, respectively. And for

SRP, DE-DDI is better than DE in five cases. In sum, the

results of Table 7 indicate that DE-DDI is able to en-

hance the effectiveness of DE on the real-world problems

studied.

6 Conclusions

In this paper, a simple and effective framework, DE with

distributed direction information based mutation op-

erators (DE-DDI), has been presented for global nu-

merical optimization. First, a simple type of distributed

topology is used to define a neighborhood for each in-

dividual. Then, the direction information is introduced

into the mutation operator by constructing the difference

vector with the neighbors. In this way, the distributed

direction information composed by neighborhood and

direction information can be simultaneously and effec-

tively used to guide the search of DE. From the exten-

sive experimental study, it is clear that DE-DDI is able

to enhance the performance of most DE algorithms

considered. T
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b
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Table 6 Results of the multi-problem Wilcoxon’s test for DE/rand/1

versus DE-DDI with different type of distributed topology on all the

functions at 30D

Algorithm (1) (2) (3) (4) (5)

DE_rand_1 (1) – 130.0 98.0b 131.0 111.5

DE-DDI/rand/1 with I2 (2) 195.0 – 171.5 215.0a 190.5

DE-DDI/rand/1 with I3 (3) 227.0 153.5 – 254.5a 212.5

DE-DDI/rand/1 with I4 (4) 194.0 85.0 70.5b – 155.5

DE-DDI/rand/1 with I5 (5) 188.5 109.5 112.5 144.5 –

Upper diagonal of level significance a = 0.9, lower diagonal level of

significance a = 0.95
a The method in the row improves the method of the column
b The method in the column improves the method of the row
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In the future, DE-DDI will be applied to other DE

variants and more real-world problems.
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